Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Improvement of reactivity model of core deformation in plant dynamics analysis code during unprotected loss of heat sink event in EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

The benchmark analyses for the unprotected loss of heat sink (ULOHS) tests in the pool-type experimental SFR in the United States, EBR-II (BOP-301 and BOP-302R) have been conducted in order to validate the evaluation method of the reactivity feedback equipped in the plant dynamics analysis code named Super-COPD. In this study, 1D-CFD coupled analyses adding the core bowing reactivity model were conducted. Through the analysis, the applicability of the modified reactivity model was confirmed for the BOP-301 test. For the BOP-302R test, consideration of the core restraint system in the core and modeling the control rod driveline expansion reactivity was indicated.

Journal Articles

Application of 1D-CFD coupling method to unprotected loss of heat sink event in EBR-II focusing on thermal stratification in cold pool

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 10 Pages, 2022/08

To confirm the applicability of the reactivity model, the authors have been conducting the benchmark exercises of the unprotected loss of heat sink event tests in a pool-type experimental fast reactor EBR-II. In the blind phase in the benchmark analyses using the plant dynamics analysis (1D) code in which the cold pool was modeled by means of the perfect mixing volume, it was found the increase of the core inlet temperature was evaluated lower than that of the measured data and the feedback reactivity was underestimated, because the thermal stratification in the cold pool was ignored. Then, the detailed model of the cold pool for the computational fluid dynamics (CFD) code was introduced and the 1D-CFD codes coupling method was applied to the benchmark analyses. It was confirmed that both the thermal stratification in the cold pool and the increase of the core inlet temperature were successfully reproduced.

Oral presentation

Investigation of core deformation reactivity model improvement in plant dynamics analysis code during ULOHS Test of U.S. experimental fast reactor EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Hamase, Erina; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki

no journal, , 

Sodium-cooled fast reactors have intrinsic safety features decreasing reactor power during the increase of the core inlet temperature by the feedback reactivity of the radial expansion of the core support plate. It is necessary for the composition of the core highly of secure to understand the influence of the safety features with high accuracy. In this paper, first, the 1D-CFD coupling method with cold pool as CFD region which enables the plant dynamics analyses taking account of the thermal stratification in cold pool was applied to the ULOHS (Unprotected Loss Of Heat Sink) test performed in the experimental fast reactor U.S. EBR-II and the evaluation of the core inlet temperature could be improved. Secondly, the sensitivity analyses concerning the core bowing reactivity were carried out with the aim of improving the evaluations of the core deformation reactivity and the applicability of the core bowing reactivity model to the test could be indicated.

3 (Records 1-3 displayed on this page)
  • 1